1) Végezd el a következő szorzást a particionált mátrixok segítségével!

\left[ \begin{array}{cc|cc} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ \hline 2 & 3 & -1 & 3 \\ 2 & 3 & 1 & -2 \end{array} \right] \cdot \left[ \begin{array}{cc} -1 & 0 \\ 0 & -1 \\ \hline -2 & 1 \\ 2 & -1 \end{array} \right]

2) Határod meg a következő mátrixok rangját!
A= \left[ \begin{array} -1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 0 & -6 \end{array} \right]

B= \left[ \begin{array} 1 & -2 & 3 \\ 2,5 & 1 & 1,5 \\ 2 & -4 & -6 \end{array} \right]

(A B_{1,1}=1, amely valamiért nem jelenik meg egyes böngészőkben.)