Quantitative methods

Week #10-11

Gergely Daróczi

Corvinus University of Budapest, Hungary

12 April 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○

Outline

Descriptive statistics

Averages

3

- Examples
- Case studies

Statistical dispersion

- Examples
- Case studies

4 Standardization and decomposition

Graphs

There are several different averages (measures of central tendency) - with all different advantages and disadvantages:

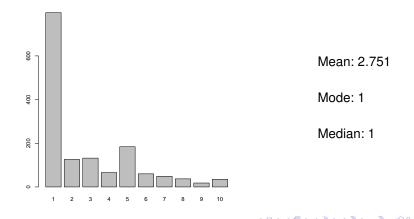
- arithmetic mean: $\frac{1}{n}\sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$
- **3** geometric mean: $\sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 x_2 \cdots x_n}$
- o mode: the most frequently occurring number/category in the sample
- e median: the middle number of the ranked variable
- 5 midrange: maxx+minx

Which of the above would you choose to describe

- your grades in this semester,
- the average number of students in the library,
- the central tendency of hair color at the university,
- the salary of people living in Budapest,
- Ioss of money in a pub at Saturday night.

Judge the following statements:

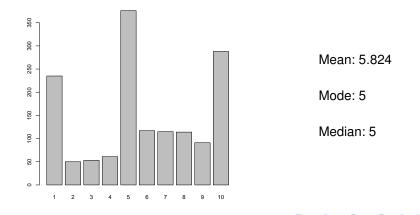
- The average weekly earnings went up 107 percent between 1940 and 1948 in the United States Steel Corporation."
- In the average salary in the same corporation was \$ 5.000 in 1942.
- The probability of dying in a car accident is twice as much than being hit by an airplane."
- Peter's IQ is 98 and Linda's is 101. A nice evidence of girls beeing smarter than boys."
- This year I sleep twice as much than I used to last year. Should I feel happy?"


What average would you choose to describe the following variable asked in the European Values Study (Hungary, 2008):

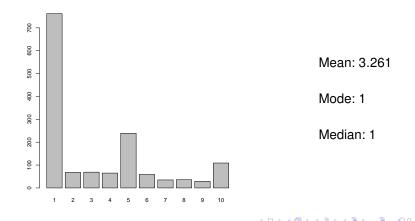
"Please tell me for each of the following statements whether you think it can always be justified (10), never (1) be justified, or something in between!"

- Claiming state benefits which you are not entitled to
- 2 Abortion
- Oivorce
- Avoiding a fare on public transport
- Homosexuality

Case studies


"Please tell me whether you think **Avoiding a fare on public transport** can always be justified (10), never (1) be justified, or something in between!"

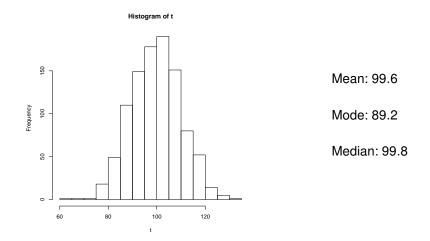
12/4/2013 7 / 56


Case studies

"Please tell me whether you think **divorce** can always be justified (10), never (1) be justified, or something in between!"

Case studies

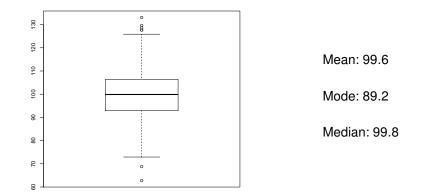
"Please tell me whether you think **homosexuality** can always be justified (10), never (1) be justified, or something in between!"


12/4/2013 9 / 56

Case studies

Research on intelligence (quotient) among students:

Research on intelligence (quotient) among students:

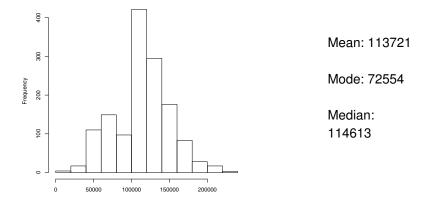

Gergely Daróczi (BCE)

Quantitative methods, 10-11/13

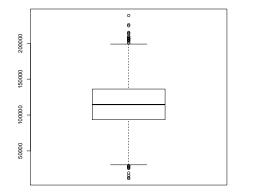
12/4/2013 11 / 56

Case studies

Research on intelligence (quotient) among students:


Case studies

Research on salary of Hungarian people:


Case studies

Research on salary of Hungarian people:

Case studies

Research on salary of Hungarian people:

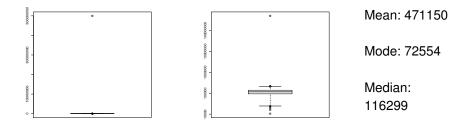
Mode: 72554

Median: 114613

12/4/2013 15 / 56

Case studies

What happens when we have a really rich person in the sample?

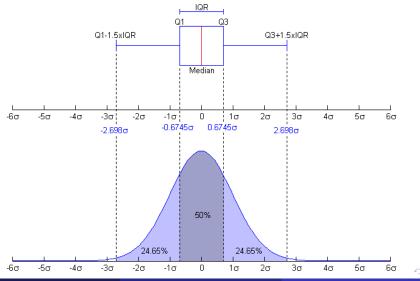


Gergely Daróczi (BCE)

Quantitative methods, 10-11/13

12/4/2013 16 / 56

What happens when we have a really rich person in the sample?

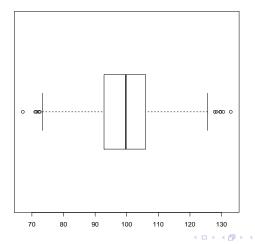


Statistical dispersion

There are several different statistical measures of variability or variation - with all different advantages and disadvantages:

- **range**: max x min x
- **2** standard deviation: $\sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i \bar{x})^2}{n-1}}$
- **3** variance: σ^2
- Interquartile range (IQR): the difference between the third and first quartiles

Interquartile range

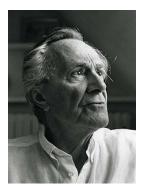

Gergely Daróczi (BCE)

Quantitative methods, 10-11/13

12/4/2013 19 / 56

Interquartile range

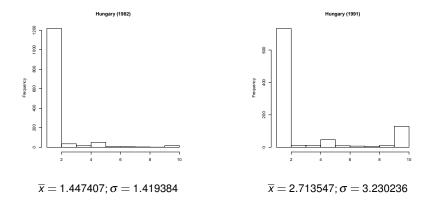
Research on intelligence (quotient) among students:

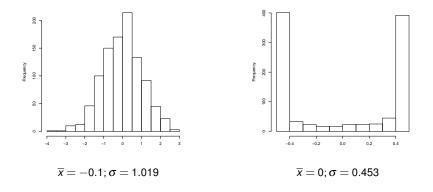


Gergely Daróczi (BCE)

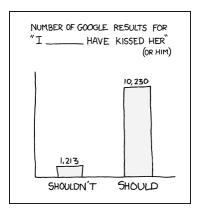
12/4/2013 20 / 56

Case study


Lyotard : The Postmodern Condition. A Report on Knowledge (1979)

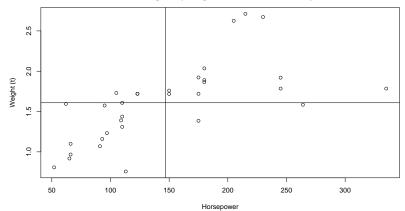

- "end of 'grand narratives' or metanarratives"
- "anything goes"
- "postmodern and postmodern culture"

What about norms?


"Please tell me whether you think **homosexuality** can always be justified (10), never (1) be justified, or something in between!" – Hungary (1982-1991)

Check the mean and standard deviation of the following variables!

A new index of measurements: sum

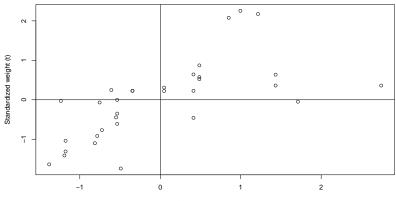

What is the problem with this desciptive in this study?

Gergely Daróczi (BCE)

> < 国 > < 国 >

< ロ ト < 同

A basic example



Henderson & Velleman (1981): Building multiple regression models interactively

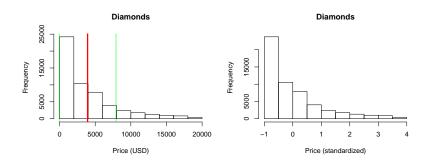
12/4/2013 25 / 56

ъ

A basic example

Henderson & Velleman (1981): Building multiple regression models interactively

Standardized horsepower


ъ

Basic theory of normalization

Standard score (z-values, z-scores, normal scores, standardized variables) indicates how many standard deviations an observation is above or below the mean:

$$z = \frac{x - \mu}{\sigma} = \frac{x_i - x}{S_x^*}$$

4

Standard score (z-values, z-scores, normal scores, standardized variables) indicates how many standard deviations an observation is above or below the mean:

$$z=\frac{x-\mu}{\sigma}=\frac{x_i-x}{S_x^*}$$

Wages (th. forints): 100, 85, 55, 120, 65

Compute the z-score for the above variable!

Exercise

Decomposition

		Miami			Alaska			U.S.	
Age	Pop.	Deaths	Rate*	Pop.	Deaths	Rate*	Pop.+	Deaths ⁺	Rate*
									_
< 15	114,350	136	1.19	37,164	59	1.59	23,961	32	1.34
15-24	80,259	57	0.71	20,036	18	0.90	15,420	9	0.58
25-44	133,440	208	1.56	32,693	37	1.13	21,353	30	1.40
45-64	142,670	1,016	7.12	14,947	90	6.02	19,609	140	7.14
65+	92,168	3,605	39.11	2,077	81	39.00	10,685	529	49.51
	562,887	5,022		106,917	285		91,028	740	
Crude death rate*			8.92			2.67			8.13

Population and Deaths by Age in 1970 for White Females in Miami, Alaska, and the U.S.

* Deaths per 1,000 population

+ in thousands

Direct standardization

Definition

In direct standardization the stratum-specific rates of study populations are applied to the age distribution of a standard population.

Directly standardized rate =
$$\frac{\sum stratum specific rates \times standard weights}{\sum standard weights}$$

$$\begin{aligned} \text{Miami} &= \frac{(1.19x23,961) + \dots + (39.11x10,685)}{91,208} = 6.92 \ \text{deaths/thousand} \\ \text{Alaska} &= \frac{(1.59x23,961) + \dots + (39x10,685)}{91,208} = 6.71 \ \text{deaths/thousand} \end{aligned}$$

Indirect standardization

Definition

In indirect standardization, the standard population provides the rates and the study population provides the weights.

Indirectly standardized rate =
$$\frac{\sum observed \ values}{\sum expected \ values}$$

Expected values = Stratum specific rates from the standard population \times stratum sizes from the study population

$$\begin{aligned} \text{Miami} &= \frac{5,022}{(1.34x114,350) + \dots + (49.51x91,168)} 8.13 = 6.84 \text{ deaths/th.} \\ \text{Alaska} &= \frac{285}{(1.34x37,164) + \dots + (49.51x2,077)} 8.13 = 7.32 \text{ deaths/th.} \end{aligned}$$

Summary

Crude and Age-Standardized* 1970 Death Rates Per 1000 for White Females in Alaska, Miami, and the U.S.

	Alaska	Miami	U.S.
Crude	2.67	8.92	8.13
Direct	6.71	6.92	-
Indirect	7.23	6.84	-

*Standard population is 1970 U.S. white females

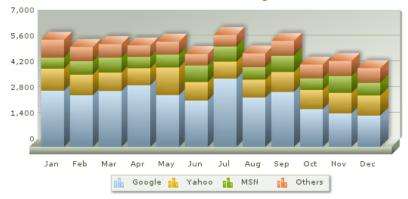
		Study population	Standard population			
Directly-standardized		Rates Weights	Weights Rates			
			< ロ > < 個 > < 言 > < 言 > 言			
Gergely Daróczi (BCE)	Qu	antitative methods, 10-11/13	12/4/2013	31 / 56		

Death rates by age in two occupations and a standard population

	Occupation A			Occupation B			Standard population		
Age	Persons	Deaths	Rate	Persons	Deaths	Rate	Persons	Deaths	Rate
40-49	1,000	2	0.002	5,000	10	0.002	30,000	30	0.001
50-59	5,000	20	0.004	1,000	4	0.004	40,000	120	0.003
Total	6,000	22		6,000	14		70,000	150	

Compute the death rate for Occupation A and B!

Exercise



12/4/2013 33 / 56

イロト イポト イヨト イヨト

i

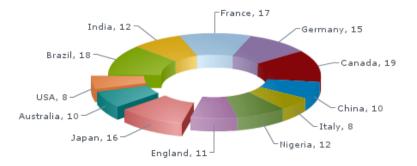
Visits from search engines

Gergely Daróczi (BCE)

E ■ ● E ● Q C 12/4/2013 34 / 56

イロト イポト イヨト イヨト

Graphs Line


Gergely Daróczi (BCE)

E ■ ● E ● Q C 12/4/2013 35 / 56

イロト イポト イヨト イヨト

Industrial Growth Rate (Country)

< D > < B

▶ < 글 ▶ < 글 ▶</p>

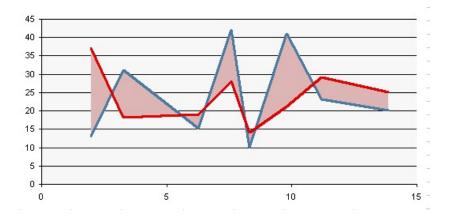
Graphs

Area

Gergely Daróczi (BCE)

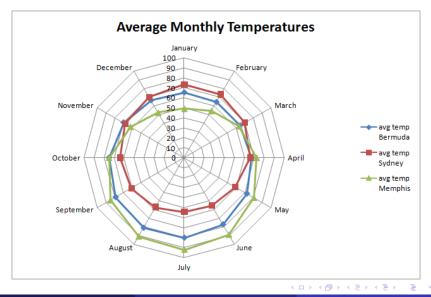
Quantitative methods, 10-11/13

12/4/2013 37 / 56



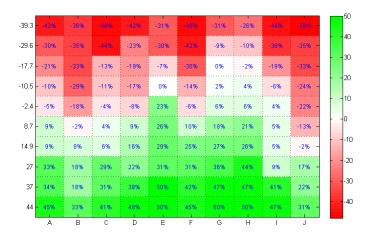
E ► E ∽ Q C 12/4/2013 38 / 56

・ロト ・聞 と ・ 国 と ・ 国 と

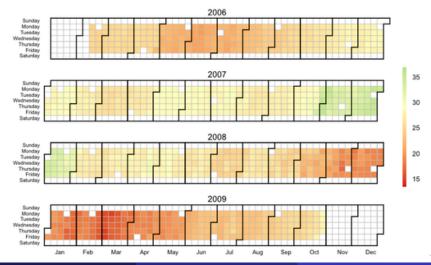

Graphs Combo

E ► E ∽ Q C 12/4/2013 39 / 56

イロト イポト イヨト イヨト



Gergely Daróczi (BCE)


12/4/2013 40 / 56

Graphs Heatmap

E ■ ● E ● へで 12/4/2013 41 / 56

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Calendar Heat Map of MSFT Adjusted Close

Gergely Daróczi (BCE)

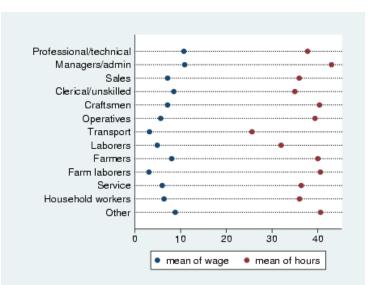
12/4/2013 42 / 56

12/4/2013 43 / 56

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

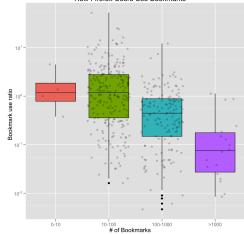
Graphs Dot plot

Gas Milage for Car Models grouped by cylinder


4						
÷.	Toyota Corolla					• • •
	Fiat 128					•
	Lotus Europa					•••••
	Honda Civic					• • • • • • • • • • • • • • • • • • •
	Fiat X1-9				•	
	Porsche 914-2				•••••	
	Merc 240D				• • • • • • • • • • • • • • • • • • • •	
	Merc 230				•	
	Datsun 710				•	
	Toyota Corona			•••••		
	Volvo 142E			• • • • • • • • • • • • • • • • • • • •		
6						
	Hornet 4 Drive			• • • • • • • • • • • • • • • • • • • •		
	Mazda RX4 Wag			• • • • • • • • • • • • • • • • • • • •		
	Mazda RX4			• • • • • • • • • • • • • • • • • • • •		
	Ferrari Dino			• • • • • • • • • • • • • • • • • • • •		
	Merc 280			•		
	Valiant		• • •			
	Merc 280C		• • •			
8						
	Pontiac Firebird			• •		
	Hornet Sportabout			•		
	Merc 450SL		• • • • • • • • • • • • • • • • • • • •			
	Merc 450SE		• • • • • • • • • • • • • • • • • • • •			
	Ford Pantera L		• • • • • • • • • • • • • • • • • • • •			
	Dodge Challenger		• • • • • • • • • • • • • • • • • • • •			
	AMC Javelin		••••			
	Merc 450SLC		••••			
	Maserati Bora		• •			
	Chrysler Imperial		• • • • • • • • • • • • • • • • • • • •			
	Duster 360		•			
	Camaro Z28	• • • •				
	Lincoln Continental					
	Cadillac Fleetwood	•				
		· · · · · · · · · · · · · · · · · · ·	1	1	1	1
		10	15	20	25	30
		Miles Per Gallon				

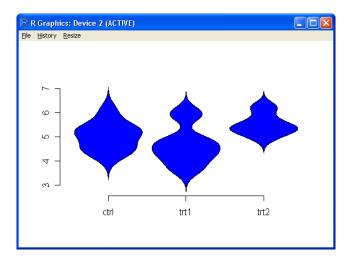
Gergely Daróczi (BCE)

Quantitative methods, 10-11/13


E ■ ● E ● へで 12/4/2013 44 / 56

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

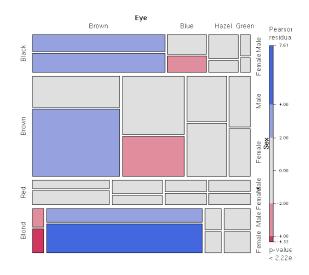
12/4/2013 45 / 56



How Firefox Users Use Bookmarks

< • • • **•**

12/4/2013 46 / 56

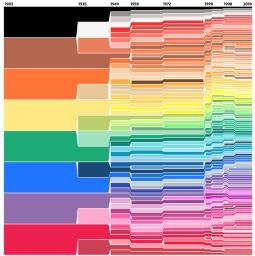

ヨトメヨ

E ■ ● E ● Q C 12/4/2013 47 / 56

<ロ> (日) (日) (日) (日) (日)

Graphs Mosaic chart

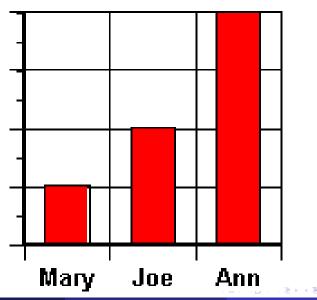
Gergely Daróczi (BCE)


E ► E ∽ Q C 12/4/2013 48 / 56

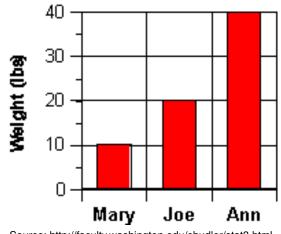
・ロト ・四ト ・ヨト ・ヨト

イロト イポト イヨト イヨト

Graphs "Crayola Color Chart, 1903-2010"

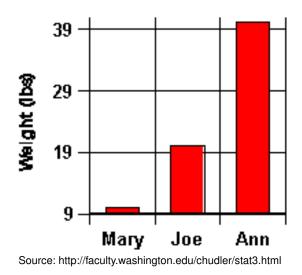


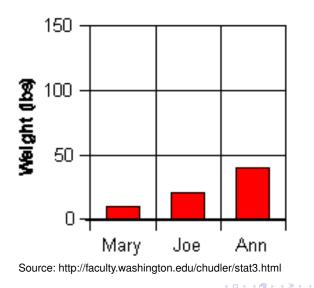
DATA POINTED datapointed.n


◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

- http://www.visual-literacy.org/periodic_table/periodic_table.html
- http://www.edwardtufte.com/tufte/
- http://www.perceptualedge.com/
- http://www.visualcomplexity.com/vc/
- http://flowingdata.com/
- http://infosthetics.com/
- http://chartsgraphs.wordpress.com/
- http://www.informationisbeautiful.net/
- http://chartporn.org/

Pumpkins


Pumpkins


Source: http://faculty.washington.edu/chudler/stat3.html

12/4/2013 53 / 56

Pumpkins

Pumpkins

Gergely Daróczi (BCE)

12/4/2013 55 / 56

1

It was a pleasure!

Gergely Daróczi daroczi.gergely@btk.ppke.hu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで