Quantitative methods

Week #10-11

Gergely Daróczi

Corvinus University of Budapest, Hungary

12 April 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○

Outline

Midterm exam

2 Correlation & regression

3 Crosstables

- Theoretical background
- Visual examples
- Percentages
- Expected value
- Chi-squared statistic
- Exercise

Simpson's paradox

Results

Midterm exam results

Gergely Daróczi (BCE)

Quantitative methods, 10-11/13

< D > < B

▶ < 글 > < 글 >

≣▶ ≣ ∽੧<∂ 12/4/2013 3/24 Results

Midterm exam results

Gergely Daróczi (BCE)

< D > < B

▶ < 글 > < 글 >

≣▶ ≣ ∽೩୯ 12/4/2013 3/24

Wind (miles per hour)

Gergely Daróczi (BCE)

12/4/2013 4 / 24

Gergely Daróczi (BCE)

12/4/2013 4 / 24

Correlation Real association?

Gergely Daróczi (BCE)

Quantitative methods, 10-11/13

12/4/2013 4 / 24

Correlation exercise

Required formulas

$$\overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n} \quad S_{x} = \sqrt{\sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{n - 1}} \quad COV(X, Y) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{(n - 1)}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{(n - 1)s_{x}s_{y}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}$$

$$\widehat{r}_{XY \cdot \mathbf{Z}} = \frac{r_{XY} - r_{XZ}r_{YZ}}{\sqrt{(1 - r_{XZ}^{2})(1 - r_{YZ}^{2})}}$$

$$\widehat{\alpha} = \overline{y} - \widehat{\beta}\overline{x} \quad \widehat{\beta} = \frac{COV(x, y)}{VAR(x)} \quad \widehat{y} = \beta x + \alpha \qquad \widehat{y} = \alpha + \beta x$$

n

イロト イポト イヨト イヨト

≣▶ ≣ •∕) ৭.(12/4/2013 5/24

Compute the correlation and build linear models:

Grade	Monthly scholarship	Spent on books
3	22 000 Ft	4 000 Ft
4	24 000 Ft	3 000 Ft
5	27 000 Ft	2 500 Ft
3.5	24 000 Ft	3 500 Ft
2	23 000 Ft	2 000 Ft

Discrete (qualitative) variables

_

ID	gender	color
1	Female	pink
2	Female	pink
3	Female	pink
4	Female	pink
5	Female	pink
6	Female	pink
95	Male	yellow
96	Male	yellow
97	Male	yellow
98	Male	yellow
99	Male	yellow
100	Male	yellow

<ロ> (四) (四) (三) (三) (三)

Discrete (qualitative) variables

Discrete (qualitative) variables

Gergely Daróczi (BCE)

Discrete (qualitative) variables

	green	pink	yellow
Female	17	30	13
Male	18	10	12

< ロ > < 四 > < 回 > < 回 > < 回 > 、

Discrete (qualitative) variables

	green	pink	yellow	
Female	17	30	13	Marginale
Male	18	10	12	Marginais
	Marginals			N

ヘロン 人間 とくほ とくほ とう

Discrete (qualitative) variables

	green	pink	yellow	Σ
Female	17	30	13	60
Male	18	10	12	40
Σ	35	40	25	100

ヘロン 人間 とくほ とくほ とう

Percentages

	green	pink	yellow	Σ
Female	17	30	13	60
Male	18	10	12	40
Σ	35	40	25	100

Table : Counted values

	green	pink	yellow	Σ
Female	17 %	30 %	13 %	60 %
Male	18 %	10 %	12 %	40 %
Σ	35 %	40 %	25 %	100 %

Table : Total percentages

Row percentages

	green	pink	yellow	Σ
Female	17	30	13	60
Male	18	10	12	40
Σ	35	40	25	100

Table : Counted values

	green	pink	yellow	Σ
Female	28.3 %	50 %	21.7 %	100 %
Male	45 %	25 %	30 %	100 %
Σ	35 %	40 %	25 %	100 %

Table : Row percentages

Column percentages

	green	pink	yellow	Σ
Female	17	30	13	60
Male	18	10	12	40
Σ	35	40	25	100

Table : Counted values

	green	pink	yellow	Σ
Female	48.63 %	75 %	52 %	60 %
Male	51.4 %	25 %	48 %	40 %
Σ	100 %	100 %	100 %	100 %

Table : Column percentages

Expected values

	green	pink	yellow	Σ
Female	17	30	13	60
Male	18	10	12	40
Σ	35	40	25	100

Table : Counted values

	green	pink	yellow	Σ
Female	21	24	15	60
Male	14	16	10	40
Σ	35	40	25	100

Table : Expected values

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

where:

- χ^2 : Pearson's cumulative test statistic,
- O_i: an observed (counted) frequency,
- E_i: an expected (theoretical) frequency,
- *n*: the number of cells in the table.

 H_0 : observed and expected values are all the same

Requirements!

Computed chi-square

	green	pink	yellow	Σ
Female	$\frac{(17-21)^2}{21}$	$\frac{(30-24)^2}{24}$	$\frac{(13-15)^2}{15}$	-
Male	$\frac{(18-14)^2}{14}$	$\frac{(10-16)^2}{16}$	$\frac{(12-10)^2}{10}$	-
Σ	-	-	-	-

Table : Computed distances between observed and expected values

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 6.321429$$

degrees of freedom: (2-1)(231) = 2

イロト イヨト イヨト イヨ

Computed chi-square

 $\Rightarrow p = 0.04239545$

<ロ> (四) (四) (三) (三) (三)

Exercise

	Read required readings	Did not read required readings
3	15	5
4	20	10
5	45	5

$$E_{i,j} = \frac{M_{i, \cdot} \cdot M_{,j}}{N}$$
$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$
$$df = (3 - 1)(2 - 1) = 2$$
$$\chi^2_c = 2$$
$$\phi = \frac{\chi}{N} \quad V_c = \sqrt{\frac{\chi^2}{N \cdot (k - 1)}}$$

< ロ > < 四 > < 回 > < 回 > < 回 > 、

Berkeley sex bias case

E ■ ● E ● Q C 12/4/2013 20 / 24

Berkeley sex bias case

	Admitted	Deny	Σ
Female	1494	2827	4321
Male	3738	4704	8442
Σ	5232	7531	12763

Table : Observed values

<ロト <回 > < 回 > < 三 > < 三

Berkeley sex bias case

	Admitted	Deny	Σ
Female	1494	2827	4321
Male	3738	4704	8442
Σ	5232	7531	12763

Table : Observed values

	Admitted	Deny	Σ
Female	34.6 %	65.4 %	100 %
Male	44.3 %	55.7 %	100 %
Σ	41 %	59 %	100 %

Table : Row percentages

Berkeley sex bias case

	Admitted	Deny	Σ
Female	1494	2827	4321
Male	3738	4704	8442
Σ	5232	7531	12763

Table : Observed values

	Admitted	Deny	Σ
Female	34.6 %	65.4 %	100 %
Male	44.3 %	55.7 %	100 %
Σ	41 %	59 %	100 %

Table : Row percentages

$$\chi^2 = 110.8489; d.f. = 1; p = 6.385628e - 26$$

Gergely Daróczi (BCE)

Berkeley sex bias case

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

	Men		Won	nen
Departement	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	272	6%	341	7%

イロト 人間 とくほ とくほ とう

Batting averages in professional baseball

	1995		1996		Combined	
	Runs/Outs	%	Runs/Outs	%	Runs/Outs	%
Derek Jeter	12/48	25 %	183/582	31.4 %	195/630	31 %
David Justice	104/411	25.3 %	45/140	32.1 %	149/551	27 %

Who is the better player?

It was a pleasure!

Gergely Daróczi daroczi.gergely@btk.ppke.hu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで