Quantitative methods

Week #8-9

Gergely Daróczi

Corvinus University of Budapest, Hungary

13 April 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○

Outline

Repetition

- Sampling theory
- Simple Random Sampling
- Systematic Random Sampling
- Stratified Sampling
- Systematic+Stratified Random Sampling
- Multi-Stage Sampling
- Cluster Sampling

Computations

- Required formulas
- Standard error
- A basic example
- Comparison of samples
- Standard error in finite population
- Standard error with dichotome variables
- Determining sample size

Sampling theory

Elements

13/4/2012 3 / 35

Sampling methods - Probability sampling

A short summary

Probability sampling:

- Simple Random Sampling,
- Stratified Random Sampling,
- Systematic Random Sampling,
- Oluster (Area) Random Sampling,
- Multi-Stage Sampling.

A subset of the population.

Simple Random Sampling

Drawing a sample

Population

Source: Dan Kerlner, Elgin Community College

Gergely	Daróczi	(BCE)
---------	---------	-------

Quantitative methods, 8-9/14

Simple Random Sampling

Drawing a sample

э

Simple Random Sampling

Drawing a sample

э

Systematic Random Sampling

Drawing a sample

Population

Source: Dan Kerlner, Elgin Community College

Gergely Dar	óczi (BCE)
-------------	--------	------

Quantitative methods, 8-9/14

Systematic Random Sampling

Drawing a sample

Source: Dan Kerlner, Elgin Community College

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

13/4/2012 6 / 35

Stratified Sampling

Drawing a sample

Population

Source: Dan Kerlner, Elgin Community College

Gergely Dar	óczi (BCE)
-------------	--------	------

Quantitative methods, 8-9/14

э

Stratified Sampling

Drawing a sample

Source: Dan Kerlner, Elgin Community College

イロト イポト イヨト イヨト

Stratified Sampling

Drawing a sample

Source: Dan Kerlner, Elgin Community College

≣▶ ≣ ∽ি৭ে 13/4/2012 7/35

イロト イポト イヨト イヨト

Systematic+Stratified Random Sampling

Drawing a sample

Population

Source: Dan Kerlner, Elgin Community College

Gergely Dar	óczi (BCE)
-------------	--------	------

Quantitative methods, 8-9/14

Systematic+Stratified Random Sampling

Drawing a sample

Source: Dan Kerlner, Elgin Community College

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

13/4/2012 8 / 35

Multi-Stage Sampling

Drawing a sample

Population

Source: Dan Kerlner, Elgin Community College

Gergely	Daróczi	(BCE)
---------	---------	-------

Quantitative methods, 8-9/14

э

Multi-Stage Sampling

Drawing a sample

Cluster Population

Source: Dan Kerlner, Elgin Community College

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

≣▶ ≣ ∽へで 13/4/2012 9/35

イロト イポト イヨト イヨト

Multi-Stage Sampling

Drawing a sample

Source: Dan Kerlner, Elgin Community College

< □ > < 🗇

글 🕨 🖌 글 🕨

Cluster Sampling

Drawing a sample

Gergely Daróczi (BCE)

13/4/2012 10 / 35

Computation

Required formulas

For Simple Random Sampling:

- mean: $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
- standard deviation: $\sigma = \sqrt{\sum_{i=1}^{n} \frac{(x_i \bar{x})^2}{n}}$
- standard error: $SE = \frac{\sigma}{\sqrt{n}} \cdot FPC$
- Finite Population Correction: if sampling fraction is large (>5%)

$$FPC = \sqrt{1 - \frac{n}{N}}$$

- confidence interval: $\overline{x} \pm z \cdot SE$, where z = 1,96
- confidence interval: $[\overline{x} 2 \cdot SE; \overline{x} + 2 \cdot SE]$

Computation

A short summary on Standard error

A basic example

Game rules

Roll the dice! If the result is even, the player wins the rolled value in dollars. If the result is odd, the playes pays 2 dollars to the bank.

After rolling the below values, what would you think about the expected value of the game?

Would you continue playing?

Results

$$X = \{-2, 2, 4, -2, -2, 6\}$$

$$\overline{x} = \frac{-2 + 2 + 4 + 2 + 2 + 6}{6} = \frac{6}{6} = \frac{1}{1} = 1$$

$$\sigma = \sqrt{\frac{(-2 - 1)^2 + (2 - 1)^2 + (4 - 1)^1 + (-2 - 1)^1 + (-2 - 1)^2 + (6 - 1)^2}{5}} = \sqrt{\frac{9 + 1 + 9 + 9 + 9 + 25}{5}} = \sqrt{\frac{62}{5}} = \sqrt{12.4} = 3.521363$$

$$SE = \frac{3.521363}{\sqrt{6}} = \frac{3.521363}{2.44949} = 1.437591$$
The expected value can vary between -1.87 and 3.87 at 95% Cl.

Good luck!

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

< ロ > < 四 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Forget about the experiment and try to determine the **real** expected value of the game!

What is wrong with the above plot?

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

The height, in inches, of six trees at a nursery are shown at the specificed dates.

Find the mean, standard deviation and standard error of the heights! Is there a significant difference between the means of samples?

2011 March 22: 36 48 50 44 53 39

Comparison of samples

The height, in inches, of six trees at a nursery are shown at the specificed dates.

Find the mean, standard deviation and standard error of the heights! Is there a significant difference between the means of samples?

2011 March 22: 36 48 50 44 53 39

$$X = \{36, 48, 50, 44, 53, 39\}$$

$$\overline{x} = \frac{36 + 48 + 50 + 44 + 53 + 39}{6} = \frac{270}{6} = 45$$

$$\sigma = \sqrt{\frac{(36 - 45)^2 + (48 - 45)^2 + (50 - 45)^2 + (44 - 45)^2 + (54 - 45)^2 + (39 - 45)^2}{5}} = \sqrt{\frac{(36 - 45)^2 + (48 - 45)^2 + (50 - 45)^2 + (44 - 45)^2 + (54 - 45)^2 + (39 - 45)^2}{5}} = \sqrt{\frac{5}{5}} = \sqrt{\frac{216}{5}} = \sqrt{43.2} = 6.57$$

$$SE = \frac{6.57}{\sqrt{6}} = \frac{6.57}{2.44} = 2.68$$

The expected value can vary between 40.5 and 49.5 at 95% CI.

Gergely Daróczi (BCE)

Comparison of samples

The height, in inches, of six trees at a nursery are shown at the specificed dates.

Find the mean, standard deviation and standard error of the heights! Is there a significant difference between the means of samples?

2011 April 1: 41 53 55 49 58 44

$$X = \{41, 53, 55, 49, 58, 44\}$$

$$\overline{x} = \frac{41 + 53 + 55 + 49 + 58 + 44}{6} = \frac{300}{6} = 50$$

$$\sigma = \sqrt{\frac{(41 - 50)^2 + (53 - 50)^2 + (55 - 50)^2 + (49 - 50)^2 + (58 - 50)^2 + (44 - 50)^2}{5}} = \sqrt{\frac{(41 - 50)^2 + (53 - 50)^2 + (55 - 50)^2 + (49 - 50)^2 + (58 - 50)^2 + (44 - 50)^2}{5}} = \sqrt{\frac{5}{5}} = \sqrt{\frac{216}{5}} = \sqrt{43.2} = 6.57$$

$$SE = \frac{6.57}{\sqrt{6}} = \frac{6.57}{2.44} = 2.68$$

The expected value can vary between 45.5 and 54.5 at 95% CI.

Gergely Daróczi (BCE)

The height, in inches, of six trees at a nursery are shown at the specificed dates.

Find the mean, standard deviation and standard error of the heights! Is there a significant difference between the means of samples?

- **2010 November 22**: 36 48 50 44 53 39
- 2011 April 1: 41 53 55 49 58 44

We have seen in the dice example, that the standard error (1.437591) could be relatively high compared to the mean (1).

If we would check the exact same values (-2, 2, 4, -2, -2, 6) denoting the temperature measured from Monday to Saturday, then would you think that the average temperature at the audited week cannot be estimated more precisely than the earlier computed confidence interval (-1.87 – 3.87)? You have only one missing data!

$$SE = rac{\sigma}{\sqrt{n}} \cdot \sqrt{1 - rac{n}{N}}$$

Is there any difference between computing the standard error in Hungary or in the United States?

Computation

Standard error in finite population

$$X = \{-2, 2, 4, -2, -2, 6\}$$

$$\overline{x} = \frac{-2+2+4+2+2+6}{6} = \frac{6}{6} = \frac{1}{1} = 1$$

$$\sigma = \sqrt{\frac{(-2-1)^2 + (2-1)^2 + (4-1)^1 + (-2-1)^1 + (-2-1)^2 + (6-1)^2}{5}} = \sqrt{\frac{5}{5}} = \sqrt{\frac{62}{5}} = \sqrt{12.4} = 3.521363$$

$$SE = \frac{3.521363}{\sqrt{6}} \cdot FPC = \frac{3.521363}{2.44949} \cdot FPC = 1.437591 \cdot FPC$$

$$FPC = \sqrt{1 - \frac{n}{N}} = \sqrt{1 - \frac{6}{7}} = 0.377$$

$$SE = 0.54$$

The expected value can vary between 0.46 and 1.54 at 95% CI (opposed to: 1.87, 3.87).

Gergely Daróczi (BCE)

Quantitative methods, 8-9/14

13/4/2012 21 / 35

イロト イポト イヨト イヨト

"The gas prices dramatically increased in 2011 in Hungary. We asked drivers about how much they would pay for one litre of gasoline. The results showed that there are some drivers who would even pay more then 450 forints for a litre, others do not tend to refill at the prices of 400."

Forensis Autóklub (November of 2011)

"How much would you pay for one litre of gas?"

410, 420, 420, 430, 500, 450, 400, 425, 460

(신문) (문문

"How much would you pay for one litre of gas?"

```
410, 420, 420, 430, 500, 450, 400, 425, 460
```

Descriptive statistics:

• mean: $\overline{x} = \frac{410+420+420+430+500+450+400+425+460}{9} = 435$

- median: 425
- mode: 420
- **minimum**: 400
- maximum: 500
- range: 100

"How much would you pay for one litre of gas?"

410, 420, 420, 430, 500, 450, 400, 425, 460

• mean:
$$\overline{x} = \frac{410+420+420+430+500+450+400+425+460}{9} = 435$$

- standard deviation: $S^* = 30.619$
- standard error: $SE = \frac{30,619}{\sqrt{9}} = \frac{30,619}{3} = 10,206$
- confidence interval: $435 \pm 2 \cdot 10,206 = [414,59;455,41]$

"How much would you pay for one litre of gas?"

410, 420, 420, 430, 500, 450, 400, 425, 460

• mean: $\overline{x} = \frac{410+420+420+430+500+450+400+425+460}{9} = 435$

- standard deviation: $S^* = 30.619$
- standard error: $SE = \frac{30,619}{\sqrt{9}} = \frac{30,619}{3} = 10,206$
- confidence interval: $435 \pm 2 \cdot 10, 206 = [414, 59; 455, 41]$

Standard error and sampling

Examples

A módszertan haszna. EP választások 2009: "Hajszálpontos mérés"

	Nézé	őpont	Tárki	Medián	NRC	
	BSZ	BSZP	BSZP	??	??	eredmény
Fidesz	54%	66%	70%	60%	50%	56,4%
MSZP	12%	14%	17%	21%	26%	17,4%
Jobbik	6%	7%	4%	7%	13%	14,8%
MDF	5%	6%	1%	4%	4%	5,3%
SZDSZ	3%	4%	3%	4%	3%	2,2%

글 🕨 🖌 글

Standard error and sampling

Examples

A módszertan haszna. EP választások 2009: "Hajszálpontos mérés"

	Néző	ópont	Tárki	Medián	NRC	
	BSZ	BSZP	BSZP	??	??	eredmény
Fidesz	54%	66%	70%	60%	50%	56,4%
MSZP	12%	14%	17%	21%	26%	17,4%
Jobbik	6%	7%	4%	7%	13%	14,8%
MDF	5%	6%	1%	4%	4%	5,3%
SZDSZ	3%	4%	3%	4%	3%	2,2%

	Nézőpont	TÁRKI	Medián	NRC
Kutatás ideje	V. 20-22.	V. 7-20	V. 22-26.	n.a.
Módszer	Telefonos lekérdezés	Személyes lekérdezés (?)	Személyes lekérdezés	Online kérdőív
Megkérdezettek száma	1000	1000	1200	1000

Source: lectures of Dr. Bartus Tamás

Standard error and sampling

Examples

Source: spss.hu

э

13/4/2012 26 / 35

Theory

Bernoulli distribution:

- p chance for 1, q (= 1 p) chance for 0 value
- **mean**: *p*
- median: –

• mode:
$$\begin{cases} 0 & \text{if } q > p \\ 0, 1 & \text{ha } q = p \\ 1 & \text{if } q$$

- standard deviation: $\sqrt{p(1-p)}$
- variance: *p*(1 − *p*)
- standard error: $SE = \frac{S^*}{\sqrt{n}} \cdot \sqrt{1 \frac{n}{N}} \approx \frac{S^*}{\sqrt{n}} \approx \frac{\sqrt{p(1-p)}}{\sqrt{n}}$
- confidence interval: $\overline{x} \pm z \cdot SE$, where z = 1,96

Being a pessimist

Bernoulli distribution:

- assume the maximum of standard error,
- standard error is affected by standard deviation and sample size,
- higher sample size lowers standard error,
- higher standard deviation results in higher standard error.

Which p value would result in the maximum of standard deviation?

$$S^* = \sqrt{p(1-p)}$$

Being a pessimist

Bernoulli distribution:

- assume the maximum of standard error,
- standard error is affected by standard deviation and sample size,
- higher sample size lowers standard error,
- higher standard deviation results in higher standard error.

Which p value would result in the maximum of standard deviation?

$$S^* = \sqrt{p(1-p)}$$

$$p = 0.5$$

VAR(x) = 0.5 · (1 - 0.5) = 0.5² = 0.25

Being a pessimist

Gergely Daróczi (BCE)

13/4/2012 29 / 35

Determining sample size

Compute the sample size to measure the support for a party with the precision of 2 percent!

Determining sample size

Compute the sample size to measure the support for a party with the precision of 2 percent!

- 2 percent => *SE* = 1,
- maximum of variance: 50 · (100 − 50) = 2500

•
$$SE = \frac{S^*}{\sqrt{n}}$$

• 1 =
$$\frac{\sqrt{2500}}{\sqrt{n}}$$

(

₩

 $\downarrow \downarrow$

- $1 \cdot \sqrt{n} = \sqrt{2500}$
- *n* = 2500

Example

Compute the sample size to measure the time spent in front of television among Hungarian citizents! Let us choose a precision of 5 minutes.

Example

Compute the sample size to measure the time spent in front of television among Hungarian citizents! Let us choose a precision of 5 minutes.

1

1

- 5 mins => *SE* = 2.5,
- estimated standard deviation: 10

•
$$SE = \frac{S^*}{\sqrt{n}}$$

• 2,5 =
$$\frac{10}{\sqrt{n}}$$

•
$$2,5 \cdot \sqrt{n} = 10$$

•
$$\sqrt{n} = 4$$

Gergely Daróczi (BCE)

Example

Compute the sample size to measure the time spent in front of television among Hungarian citizents! Let us choose a precision of 1 minutes.

Example

Compute the sample size to measure the time spent in front of television among Hungarian citizents! Let us choose a precision of 1 minutes.

1

1

- 1 mins => *SE* = 0.5,
- estimated deviation: 10

•
$$SE = \frac{S^*}{\sqrt{n}}$$

• 0,5 =
$$\frac{10}{\sqrt{n}}$$

•
$$0,5\cdot\sqrt{n}=10$$

•
$$\sqrt{n} = 20$$

Gergely Daróczi (BCE)

We asked 4 student about the number of cats at home:

	Rockers	Rappers
Girls	9	7
Boys	3	1

Imagine, what would be the results if the sample was choosen randomly and if it was stratified?

Choosing samples of n=2:

SRS: 6 possible samples: (1,7) (1,9) (3,7) (3,9) (1,3) (7,9)
$$\overline{x} = \frac{4+5+5+6+2+8}{6} = 5, S^* = \frac{1+0+0+1+9+9}{6} = 3.33$$

Strat. Sampling: 4 possible samples: (1,7) (1,9) (3,7) (3,9) $\overline{x} = \frac{4+5+5+6}{4} = 5, S^* = \frac{1+0+0+1}{4} = 0.5$

Strat. Sampling: 4 possible samples: (1,3) (1,9) (3,9) (3,7) $\overline{x} = \frac{2+5+6+5}{4} = 4.5, S^* = \frac{2.5^2+0.5^2+1.5^2+0.5^2}{4} = 2.25$

Sampling methods - Nonprobability sampling

A short summary

Nonprobability sampling:

- Accidental, Haphazard or Convenience Sampling,
- Purposive Sampling:
 - Modal Instance Sampling,
 - Expert Sampling,
 - Quota Sampling:
 - Proportional Quota Sampling,
 - 2 Nonproportional Quota Sampling.
 - Heterogeneity Sampling,
 - Snowball Sampling.

It was a pleasure!

Daróczi Gergely daroczi.gergely@btk.ppke.hu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで